150=(-16x^2)+120x+3

Simple and best practice solution for 150=(-16x^2)+120x+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 150=(-16x^2)+120x+3 equation:



150=(-16x^2)+120x+3
We move all terms to the left:
150-((-16x^2)+120x+3)=0
We calculate terms in parentheses: -((-16x^2)+120x+3), so:
(-16x^2)+120x+3
We get rid of parentheses
-16x^2+120x+3
Back to the equation:
-(-16x^2+120x+3)
We get rid of parentheses
16x^2-120x-3+150=0
We add all the numbers together, and all the variables
16x^2-120x+147=0
a = 16; b = -120; c = +147;
Δ = b2-4ac
Δ = -1202-4·16·147
Δ = 4992
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4992}=\sqrt{64*78}=\sqrt{64}*\sqrt{78}=8\sqrt{78}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-120)-8\sqrt{78}}{2*16}=\frac{120-8\sqrt{78}}{32} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-120)+8\sqrt{78}}{2*16}=\frac{120+8\sqrt{78}}{32} $

See similar equations:

| 14x-18=-1x | | 0.6x-0.2=0.5x+0.6 | | -5(3y+3)-11=6(y+7)+3y | | 12c=4c+16 | | 2p+10=2p+3 | | 7=x-(-12) | | (-12)-x=7 | | 2y+39=35+7y | | -7(36+3)+(22b-4)=0 | | .5(2x+8)=-10 | | X+13=5x-31 | | 4x-56=-3x | | x/12−6=−5 | | X^2+41x+20=0 | | 4(x-3)+3x=-2(x+1) | | -9=-1+2x | | -7(36+3)(22b-4)=0 | | -4x+x^2+4=0 | | -17y+4=3y-66 | | -15w-80=-48 | | 3z+12=2z+10 | | 5m-2m=0 | | -4(3x+2)=3(-4x+5) | | x*0.8=0.6 | | 3w−5=4 | | (2x+3)+(6x-4)=(9x-3)+(8x-16) | | -12=9-3x | | 179=9+10x | | 3xx11=72 | | -4d-28=3d | | 5(h-1)=2(h+5) | | 2x+3)+(6x-4)=(9x-3)+(8x-16) |

Equations solver categories